Neutron scattering from Skyrmions in helimagnets

Jonas Kindervater

European Research Council Established by the European Commission

Collaborations

A. Bauer

F. Rucker

S. Säubert

F. Haslbeck

G. Benka

P. Schmakat

G. Brandl

A. Chacon

P. Böni

C. Pfleiderer

TU München - FRM II

W. Häußler

S. Mühlbauer

C. Franz

T. Schröder

C. Fuchs

R. Georgii

T. Reimann

M. Schulz

Los Alamos

M. Janoschek

TU München - E10

I. Stasinopoulos

S. Weichselbaumer

D. Grundler \rightarrow EPFL

Universität zu Köln

A. Rosch

M. Garst

J. Waizner

L. Köhler

Skyrmions

stereographic projection from sphere to plane:

topologically stable object with quantized winding number

$$W = \frac{1}{4\pi} \int d^2 r \, \hat{M} \left(\partial_x \hat{M} \times \partial_y \hat{M} \right)$$

one flux quantum per skyrmion

Current Density: $\sim 10^{12}$ A/m²

Current driven motion of Skyrmions

Current Density: ~10⁶A/m²

F. Jomitz *et al.*, Science **330**, 1648 (2010) T. Schulz *et al.*, Nat. Phys. **8**, 301 (2012)

S. Mühlbauer *et al.*, Science **323**, 915 (2009) T. Adams *et al.*, Phys. Rev. Lett. **107**, 217206 (2011)

W. Münzer et al., Phys. Rev. B 81, 041203 (2010)

ТШ

(1) Introduction to Neutron Scattering

- Neutron scattering
- Small angle neutron scattering
- Neutron Spin Echo

(2) Skyrmions in cubic chiral magnets

- Introduction
- Topological unwinding into helical/conical phase
- Field induced tricritical point in MnSi
- Skyrmionic textures in the paramagnetic phase

(3) Conclusion

٦Ш

(1) Introduction to Neutron Scattering

- Neutron scattering
- Small angle neutron scattering
- Neutron Spin Echo

(2) Skyrmions in cubic chiral magnets

- Introduction
- Topological unwinding into helical/conical phase
- Field induced tricritical point in MnSi
- Skyrmionic textures in the paramagnetic phase

(3) Conclusion

B. N. Brockhouse C. G. Shull Nobel Prize 1994

Roger Pynn, "Neutron scattering: a primer" Los Alamos Science (1990)

Neutron Sources

Fission

FRM II, Germany

SNS, USA

ESS, Sweden

- no charge
- no measurable dipole moment
- spin-1/2 particle -> magnetic moment
- wavelength ~ interatomic distances
- energy ~ energy of excitations in solids

ПШ

Electrons

- electrostatic interaction with e⁻
- strong interaction
- small penetration depth

X-rays

- electromagnetic interaction with e⁻
- strong interaction
- small penetration depth

Neutrons

- interaction with nuclei
 - short range
- magnetic dipole-dipole interaction between neutron and unpaired e⁻
 - not short range
- large penetration depth

ТЛП

Electrons

- electrostatic interaction with e⁻
- strong interaction
- small penetration depth

X-rays

- electromagnetic interaction with e⁻
- strong interaction
- small penetration depth

Neutrons

- interaction with nuclei
 - short range
- magnetic dipole-dipole interaction between neutron and unpaired e⁻
 - not short range
- large penetration depth

Advantages:

- penetrating: bulk properties
- penetrating: extreme sample environments
- isotope sensitive
- magnetic interaction

Disadvantages:

- kinematic restrictions (can't access all energy & momentum transfers)
- weak scattering
- only weak sources

unique magnetic interaction very powerful in magnetism

signal limited technique

ПΠ

- short range (~fm)
- isotope dependent (random in Z)
- depends on spin state of nucleus

Fermi pseudopotential

$$\mathbf{V}_{j}(\boldsymbol{r}) = \frac{2\pi\hbar^{2}}{\mathrm{m}} \mathbf{b}_{j} \,\delta(\boldsymbol{r})$$

scattering length: b_j

$$\sigma = 4\pi b^2$$

NIST Annual report 2003, https://www.ncnr.nist.gov

Roger Pynn, "Neutron scattering: a primer" Los Alamos Science (1990)

Coherent scattering

$$\left(\frac{d^2\sigma}{d\Omega.dE}\right)_{coh} = b_{coh}^2 \frac{k'}{k} NS(\vec{Q},\omega)$$

- elastic coherent scattering: positions of atoms
- inelastic coherent scattering: collective excitations, i.e. phonons, magnons

Incoherent scattering

$$\left(\frac{d^2\sigma}{d\Omega.dE}\right)_{inc} = b_{inc}^2 \frac{k'}{k} NS_i(\vec{Q}, \omega)$$

- elastic incoherent scattering: background
- inelastic incoherent scattering: self-correlation, i.e. diffusion processes

- with unpaired electrons
- dipole-dipole interaction
- weak
- Formfactor
- spin dependent

Dipole interaction

 $\widehat{V}_m(\mathbf{r}) = -\gamma \mu_N \widehat{\boldsymbol{\sigma}} \, \mathbf{M}(\mathbf{r})$

- $\gamma \mu_N$: strenght of neutron's magnetic moment
- $\widehat{\sigma}$: direction of neutron's spin
- **M**(**r**): magnetic moment of the sample

Magnetic diffraction measures the Fourier transform of magnetization density

How to investigate the structue of Skyrmions?

- magnetic lattice
- d ~ 200Å
- Stabalized in magnetic field

Roger Pynn, "Neutron scattering: a primer" Los Alamos Science (1990)

(1) Introduction to Neutron Scattering

- Neutron scattering
- Small angle neutron scattering
- Neutron Spin Echo

(2) Skyrmions in cubic chiral magnets

- Introduction
- Topological unwinding into helical/conical phase
- Field induced tricritical point in MnSi
- Skyrmionic textures in the paramagnetic phase

(3) Conclusion

sample

detector

Typical Applications:

selector

- Soft matter: structure of proteins, polymers, viruses
- Magnetism: superconducting vortices, Skyrmions
- Material science: Mg hydrides for hydrogen storage, ...

SANS-1 @ MLZ

٦Ш

SANS-1 @ MLZ

Velocity selector

• 30.000 rpm max.

Sample position

- Minimize flight path in air
- allow multiple sample environments

Detector tube:

- Vacuum vessel to reduce background
- Sample detector distance 1-40m
- He-3 position sensitive detector 1m²
- interior covered with Cadmium

How to investigate fluctuations of the Skyrmion lattice?

- magnetic lattice
- d ~ 200Å
- Stabalized in magnetic field
- High energy resolution!

Roger Pynn, "Neutron scattering: a primer" Los Alamos Science (1990)

ЛЛ

How to investigate fluctuations of the Skyrmion lattice?

- magnetic lattice
- d ~ 200Å
- Stabalized in magnetic field

How to investigate fluctuations of the Skyrmion lattice?

- magnetic lattice •
- d ~ 200Å
- Stabalized in magnetic field •

Roger Pynn, "Neutron scattering: a primer" Los Alamos Science (1990)

٦Ш

(1) Introduction to Neutron Scattering

- Neutron scattering
- Small angle neutron scattering
- Neutron Spin Echo

(2) Skyrmions in cubic chiral magnets

- Introduction
- Topological unwinding
- Field induced tricritical point in MnSi
- Skyrmionic textures in the paramagnetic phase

(3) Conclusion

Larmor precession

 Magnetic moment of neutron precesses with the Larmor frequency

$$\omega_L = \gamma_L \cdot H$$

Neutron Spin Echo

- invented by F. Mezei in 1972
- highest energy resolution among all neutron spectroscopic techniques

Neutron Spin Echo

- invented by F. Mezei in 1972
- highest energy resolution among all neutron spectroscopic techniques

Neutron Resonance Spin Echo

- invented by R. Golub & R. Gähler in 1992
- Exchange contant field by constant + rf-field
- allows adjust the resolution according to Dispersion in inelastic measurements

- invented by R. Gähler
- independent from Neutron beam polarization at sample position
- allows measurements under depolarizing conditions at the sample

MIEZE in strong magnetic fields

5T Magnet (SANS-1)

17T Magnet (B'ham, UK)

J. Kindervater et al. EPJ Web of Conf. 83, 03008 (2015)

RESEDA

- REsonance Spin Echo for
 Diverse Applications
- NSE/NRSE
- MIEZE
- Dynamic range
- T = 0.0001 20 ns
- $E = 2meV 0.02\mu eV$
- $Q_{max} = 2.5 \text{ Å}^{-1} (at \lambda = 3 \text{ Å})$

٦Ш

(1) Introduction to Neutron Scattering

- Neutron scattering
- Small angle neutron scattering
- Neutron Spin Echo

(2) Skyrmions in cubic chiral magnets

- Introduction
- Topological unwinding
- Field induced tricritical point in MnSi
- Skyrmionic textures in the paramagnetic phase

(3) Conclusion

Skyrmions in cubic chiral magnets

Skyrmions in cubic chiral magnets

- ferromagnetic exchange
- Dzyaloshinskii-Moriya
- cubic anisotropies

Skyrmions in cubic chiral magnets

- ferromagnetic exchange
- Dzyaloshinskii-Moriya
- cubic anisotropies

Skyrmions in cubic chiral magnets

- ferromagnetic exchange
- Dzyaloshinskii-Moriya
- cubic anisotropies

Skyrmions in cubic chiral magnets

- Dzyaloshinskii-Moriya
- cubic anisotropies

Skyrmions in cubic chiral magnets

• cubic anisotropies

Skyrmions in cubic chiral magnets

- Dzyaloshinskii-Moriya
- cubic anisotropies

Skyrmions in cubic chiral magnets

B = 0

 $|q_x|(10^{-3} \cdot \hat{A}^1)$

20 - (c/mon)

B = 0

 $|q_x|(10^{-3} \cdot Å^1)$

Skyrmions in cubic chiral magnets

- ferromagnetic exchange
- Dzyaloshinskii-Moriya
- cubic anisotropies

٦Ш

(1) Introduction to Neutron Scattering

- Neutron scattering
- Small angle neutron scattering
- Neutron Spin Echo

(2) Skyrmions in cubic chiral magnets

- Introduction
- Topological unwinding into helical/conical phase
- Field induced tricritical point in MnSi
- Skyrmionic textures in the paramagnetic phase

(3) Conclusion

T (K)

Topological unwinding in Fe_{1-x}Co_xSi

Skyrmion lattice state

- trivial topology
- no emergent magnetic flux

Topological unwinding in Fe_{1-x}Co_xSi

۲

Skyrmion lattice state

no emergent magnetic flux

٦Ш

(1) Introduction to Neutron Scattering

- Neutron scattering
- Small angle neutron scattering
- Neutron Spin Echo

(2) Skyrmions in cubic chiral magnets

- Introduction
- Topological unwinding into helical/conical phase
- Field induced tricritical point in MnSi
- Skyrmionic textures in the paramagnetic phase

(3) Conclusion

Brazovskii scenario in MnSi

Hierarchy of energy scales reflected in fluctuations:

- FM fluctuations for $T \gg T_c$
- isotropic chiral fluctuations
- anisotropic chiral fluctuations

Unpolarized SANS:

M. Janoschek *et al.* Phys. Rev. B **87**, 134407 (2013) A. Bauer *et al.*, Phys. Rev. Lett. **110**, 177207 (2013)

Brazovskii scenario in MnSi

Hierarchy of energy scales reflected in fluctuations:

- FM fluctuations for $T \gg T_c$
- isotropic chiral fluctuations
- anisotropic chiral fluctuations

J. Kindervater *et al.*, Phys. Rev. B **89**, 180408(R) (2014)
M. Janoschek *et al.* Phys. Rev. B **87**, 134407 (2013)
A. Bauer *et al.*, Phys. Rev. Lett. **110**, 177207 (2013)

helical \Rightarrow paramagnetic (@ B = 0): 1st -order Brazovskii transition

2nd -order

helical ⇒ paramagnetic (@ B = 0): 1st -order Brazovskii transition

conical \Rightarrow field polarized (@ T = 0): 2nd -order transition

2nd -order

helical ⇒ paramagnetic (@ B = 0): 1st -order Brazovskii transition

conical \Rightarrow field polarized (@ T = 0): 2nd -order transition

character of the phase transition has to change field-induced tricritical point

Field-induced tricritical point

Ш

A. Bauer et al., Phys. Rev. Lett. 110, 177207 (2013)

Thank you for your attention.